Sparse regularized fuzzy regression

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Sparse regularized local regression

The intention is to provide a Bayesian formulation of regularized local linear regression, combined with techniques for optimal bandwidth selection. This approach arises from the idea that only those covariates that are found to be relevant for the regression function should be considered by the kernel function used to define the neighborhood of the point of interest. However, the regression fu...

متن کامل

Regularized fuzzy clusterwise ridge regression

Fuzzy clusterwise regression has been a useful method for investigating cluster-level heterogeneity of observations based on linear regression. This method integrates fuzzy clustering and ordinary least-squares regression, thereby enabling to estimate regression coefficients for each cluster and fuzzy cluster memberships of observations simultaneously. In practice, however, fuzzy clusterwise re...

متن کامل

Lazy Sparse Stochastic Gradient Descent for Regularized Mutlinomial Logistic Regression

Stochastic gradient descent efficiently estimates maximum likelihood logistic regression coefficients from sparse input data. Regularization with respect to a prior coefficient distribution destroys the sparsity of the gradient evaluated at a single example. Sparsity is restored by lazily shrinking a coefficient along the cumulative gradient of the prior just before the coefficient is needed. 1...

متن کامل

Relaxed sparse eigenvalue conditions for sparse estimation via non-convex regularized regression

Non-convex regularizers usually improve the performance of sparse estimation in practice. To prove this fact, we study the conditions of sparse estimations for the sharp concave regularizers which are a general family of non-convex regularizers including many existing regularizers. For the global solutions of the regularized regression, our sparse eigenvalue based conditions are weaker than tha...

متن کامل

Regularized multivariate stochastic regression

In many high dimensional problems, the dependence structure among the variables can be quite complex. An appropriate use of the regularization techniques coupled with other classical statistical methods can often improve estimation and prediction accuracy and facilitate model interpretation, by seeking a parsimonious model representation that involves only the subset of revelent variables. We p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Applicable Analysis and Discrete Mathematics

سال: 2019

ISSN: 1452-8630,2406-100X

DOI: 10.2298/aadm171227021r